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Neural Fields



Topics

Last couple weeks focused on generative models

e (Generative adversarial networks
e Variational Autoencoders

e Normalizing Flows

e Diffusion Models

Remaining topics

e Neural fields (more about fitting, sometimes generative)
e Reinforcement learning



A Motivating Example

NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall* Pratul P. Srinivasan® Matthew Tancik* Jonathan T. Barron Ravi Ramamoorthi Ren Ng
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https://www.youtube.com/watch?v=JuH79E8rdKc



https://www.youtube.com/watch?v=JuH79E8rdKc

What is a Field?

“Afield is a quantity defined for all spatial and/or temporal coordinates.”

Table 1: Examples of fields in  gy,mples Field Quantity Scalar/Vector ~ Coordinates
physics and visual computing.
Gravitational Field Force per unit mass (N/kg)  Vector R"
3D Paraboloid: z = x> + y2 Height z Scalar R?
2D Circle: > = x> + y2 Radius r Scalar R?
Signed Distance Field (SDF)  Signed distance Scalar R"
Occupancy Field Occupancy Scalar R"
Image RGB intensity Vector 72 pixel locations x,y
Audio Amplitude Scalar Z! time ¢

“Neural Fields in Visual Computing and Beyond” by Xie et al (2022)



https://arxiv.org/abs/2111.11426

Challenges Modeling Fields

e \We often do not have closed form analytical solutions.
e Even if we know a general rule for calculation, we may not have all the inputs.
o Gravity - do we know every object in the solar system / galaxy / universe?

e Often working with approximations based on sample data

o Tradeoffs between sampling requirements (Nyquist limits) and appropriate adaptive data
structures



Neural Fields

A neural field is a neural network implementing the field “interface”.

e Coordinates in.
e Field values out.

You saw these in some of the homework problems.

e (x,y)input — (R,G,B) color values out

Sometimes this is called an implicit neural representation (INR) or coordinate MLPs (MLP
= multilayer perceptron, perceptron was a zero hidden layer neural network).



Application-Driven Focus

Compared to previous coverage of generative models,

e Much more focused on good approximations of the field
e Overfitting comparatively low concern (but not absent)
e More likely to make practical trade-offs vs elegant clean models



Neural Fields vs Generative Models

Exact comparisons depend on the context...

e Neural fields are sometimes trained on one data set from scratch.
o No interest or attempt to generalize to different data sets.
e But, there are “parameterized” neural fields

o Parameters ~ latent variables
o Is there an explicit distribution of latents? Usually not...



Applications of Neural Fields

Image fitting / reconstruction / modeling
Shape representation

Scene representation

Scene rendering



Reconstruction vs
Sensor Domains

May be working with multiple fields at
once.

e Reconstruction domain = what
we explicitly model

e Sensor domain = how we get
data

Example:

e Take several photographs and
build a 3D model (NeRF)

[ Reconstruction ] [ Forward Map ] [ Sensor Domain ]
SDF Sohere Tracing Nommal  Depti
) T
= 555

Radlance Field Volume Rendering RGB Image Depth

CT/MRI Scan

Radon/Fourier - o " L,
Transform N




Forward Mappings

e T[rain with data from sensor domain to model reconstruction domain.
e Then generate new samples from sensor domain from different “viewpoints”.

Problem Sensor Sensor Domain Forward Module Reconstruction Domain

3D Reconstruction Digital Camera Image (2D discrete array) Rendering Geometry, Appearance
Geodesy Estimation Accelerometer  Gravitational acceleration F = md = Gmim,/ 72 Density (mass)

CT Reconstruction X-ray Detector  Projection domain Radon Transform Density/Intensity

MRI Reconstruction RF Detector Frequency domain Fourier Transform Density/Intensity

Audio Reconstruction Microphone Waveform Fourier Transform Spectrogram

Synthetic Aperture Sonar  Microphone Waveform Convolution (w/ PSF)  Point Scattering Distribution

“Neural Fields in Visual Computing and Beyond” by Xie et al (2022)



https://arxiv.org/abs/2111.11426

Neural Fields for Images

e Saw this already: (X, y) pixel coordinates — (R, G, B) color values

e Applications
o image reconstruction (is this efficient?)
o  super resolution
o In-painting
o  Out-painting



General Challenges of Neural Fields

e Neural network bias towards smooth functions
e Difficulty with abrupt transitions between regimes
e |[s the representation good if it takes the same space as the original image?

Will see these in full force when evaluating images.



Fourier Features
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Dimensional Domains” by Tancik et al
(2020)



https://bmild.github.io/fourfeat/index.html
https://bmild.github.io/fourfeat/index.html
https://bmild.github.io/fourfeat/index.html

Fourier Features Positional encoding: high frequency embedding of input coordinates

Main idea: (
X) = —> (¢)
e Add features that are high and

low at different intermediate
values.

e Make features with different
spacings between high and low

so neural network can pick .
different combinations for §1n(x), COS(X)
different intermediate points. SlIl(2X) , COS(ZX)
e Transformers use the same . ' '
idea for positional encodings. SlIl(4X),.COS(4X) (c)

“Fourier Features Let Networks Learn s N. : N.
High Frequency Functions in Low sm(2 X)’ COS(2 X)

Dimensional Domains” by Tancik et al
(2020) >



https://bmild.github.io/fourfeat/index.html
https://bmild.github.io/fourfeat/index.html
https://bmild.github.io/fourfeat/index.html

Fourier Features

Simple trick enables network to memorize images

Ground truth image Standard fully-connected net With “positional encoding”



https://www.youtube.com/watch?v=LRAqeM8EjOo

Sinusoidal
Representation
N etWO rkS Ground Truth ReL.U

Tanh ReLU PE. ‘ RBF-ReLU SIREN

Do Fourier features feel like a hack...

e What if we used sin() as the
activation function?

e For the whole network?

e How is the training difficulty?

“Implicit Neural Representations with
Periodic Activation Functions” by
Sitzman et al (2020).



https://www.vincentsitzmann.com/siren/
https://www.vincentsitzmann.com/siren/

Alternative Activation Functions?

Turns out that the sine function is not the only better activation function.

e R1: “activation functions need to be parameterized where the first-order
derivatives can be controlled via the hyperparameters”

e R2: “activations should consist of varying first-order derivatives across a
considerable interval, and equivalently, non- negligible second-order
derivatives (to obtain varying Lipschitz smoothness)”

“Beyond Periodicity: Towards a Unifying Framework for Activations in
Coordinate-MLPs” by Ramasinghe and Lucey (2022)



https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
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Table 1: Comparison of existing activation functions (top block) against
the proposed activation functions (bottom block). The proposed activa-
tions and the sine activations fulfill R1 and R2, implying better suitability to
encode high-frequency signals.

Lucey (2022)


https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf

Even more Activation
Functions

Most previous activation functions do
not meet their requirements, but they
suggest many that do...

“Beyond Periodicity: Towards a
Unifying Framework for Activations in

Coordinate-MLPs” by Ramasinghe and
Lucey (2022)

Ground Truth Gaussian Laplacian ExpSin Quadratic

s =y ey I |

S =12.19 S=12.21 S=11.88 S =1241
PSNR 30.13 PSNR 29.16 PSNR 28.90 PSNR 29.11

PSNR 12.43 PSNR 13.66 PSNR 11.88 PSNR 15.91

Fig. 2: Proposed activations (left block) vs. existing activations (right block)
and their respective stable ranks (S) in image encoding without positional
embeddings. As predicted by Table 1| the proposed activations are better suited for
encoding signals with high fidelity. As Sec.|3.2/stated, the stable ranks of the proposed
activations are higher, indicating larger local Lipschitz constants which allow sharper
edges.


https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf

Gaussian Activation
Functions

Comparing ReLU and Gaussian
activation functions

Both using positional encodings
ReLU needs twice as many
layers to match PSNR

(peak signal to noise ratio)

“Beyond Periodicity: Towards a
Unifying Framework for Activations in

Coordinate-MLPs” by Ramasinghe and
Lucey (2022)

LT'9T ANSd

11|
I

Fig.1: ReLU vs Gaussian activations (ours). Gaussian activations achieve bet-
ter results with ~ 50% less parameters. These non-periodic activations also allow
embedding-free architectures (see Fig, and are robust to different random initial-
izations of coordinate-MLPs than the sinusoid activations advocated in SIREN [42].

= ElTeNsd  __ ___LoO9giNSd
PSNR 33.18


https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf

Gaussian Activation
Functions

Comparing ReLU and Gaussian
activation functions

e RelU loses fine details without
positional encodings, but
Gaussian manages to preserve
them.

“Beyond Periodicity: Towards a
Unifying Framework for Activations in
Coordinate-MLPs” by Ramasinghe and
Lucey (2022)

Gaussian w\0 PE

ReLU w\0 PE

Fig.3: Novel view synthesis without positional embedding (zoom in for a
better view). Gaussian activations can completely omit positional embeddings while
producing results with significantly better fidelity. In contrast, the performance of
ReLU-MLPs severely degrade when positional embeddings are not used. We use 8-
Layer MLPs for this experiment.


https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136930139.pdf

Parameterized Neural Fields

So far, the neural fields discussed have been trained for one specific target.

e Thatis, one network per instance.
e Parameterized neural fields take in additional parameters to target a particular

instance.
o Think of the new inputs as a latent code (the parameters) plus spatial coordinates.
o Lots of ways to integrate these into the neural field...

e SIREN paper did try out parameterized neural fields too.



SIREN
Parameterized
Neural Fields
SIREN paper tested their

parameterized neural fields with Number of context pixels
“‘inpainting” tests.

Context

e Basic idea: pick the parameters
that match the context sampled.

e Note: these random samples
are a lot harder than typical

inpainting tests where a small ’
contiguous area is missing. Figure 6: Generalizing across implicit functions parameterized by SIRENSs on the CelebA dataset [49].
Image inpainting results are shown for various numbers of context pixels in O;.

e They tried a few different ways
to map context to parameters.

“Implicit Neural Representations with
Periodic Activation Functions” by

Sitzman et al (2020).



https://www.vincentsitzmann.com/siren/
https://www.vincentsitzmann.com/siren/

Aside: Hypernetworks

TLDR: a neural network that generates the parameters for some or all of another
neural network.

e Hypernetwork outputs tend to be large, so hypernetwork itself is pretty large?

e May still net a computation speedup if the output network is used repeatedly.
o Say, if you are applying it to 1024 x 1024 pixels...



Adversarial
Generation of
Continuous Images

Designed a network INR-GAN
combining a lot of techniques to get
good image generation.

Hypernetworks

Multi-resolution generation

Factorized multiplicative

modulation (~low rank matrices)
e  GAN training

“Adversarial Generation of Continuous
Images” by Skorokhodov et al (2021)
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http://skor.sh/inr-gan.html
http://skor.sh/inr-gan.html

Adversarial
Generation of
Continuous Images

The resulting network was good at

e  Out-painting

“Adversarial Generation of Continuous
Images” by Skorokhodov et al (2021)


http://skor.sh/inr-gan.html
http://skor.sh/inr-gan.html

Adversarial
Generation of
Continuous Images

The resulting network was good at

e  Out-painting

“Adversarial Generation of Continuous
Images” by Skorokhodov et al (2021)


http://skor.sh/inr-gan.html
http://skor.sh/inr-gan.html

Adversarial
Generation of
Continuous Images

The resulting network was good at

e Image interpolation

(a) Image interpolation in the pixel-based form.

-

“Adversarial Generation of Continuous
Images” by Skorokhodov et al (2021)

(b) Image interpolation in the INR-based form.


http://skor.sh/inr-gan.html
http://skor.sh/inr-gan.html

Adversarial
Generation of
Continuous Images

The resulting network was good at
e  Super resolution

“INR-based decoder can perform
super resolution out-of-the-box by
evaluating on a denser coordinate
grid.”

“Adversarial Generation of Continuous

Images” by Skorokhodov et al (2021) Nearest Bilinear Bicubic INR-based
(19.24) (29.51) (30.3) (11.81)



http://skor.sh/inr-gan.html
http://skor.sh/inr-gan.html

Adversarial
Generation of
Continuous Images

The resulting network was good at

e Key point prediction
e Just a linear model from the
input parameters...

“Adversarial Generation of Continuous

Images” by Skorokhodov et al (2021)

(a) StyleGAN2

(b) INR-GAN


http://skor.sh/inr-gan.html
http://skor.sh/inr-gan.html

COCO-GAN

Not quite a neural field, but close.
Given a latent code,

e Break up image into “micro
patches” and “macro patches”

e Neural network takes in latent
code and micro patch
coordinates.

e  GAN training on larger macro
patches.

e Can train just off macro patches
instead of whole images.

“COCO-GAN: Generation by Parts via
Conditional Coordinating” by Lin et al
(2019)
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https://hubert0527.github.io/COCO-GAN/
https://hubert0527.github.io/COCO-GAN/

COCO-GAN

To generate image from latent code,

e  Run network for each micro
patch passing in the latent code
and micro coordinates. y

e Concatenate all micro patches 3 N i | .
together to get whole image. | : .

Micro Coordinate ¢”
Latent Vector z

.

“COCO-GAN: Generation by Parts via

Conditional Coordinating” by Lin et al
(2019)


https://hubert0527.github.io/COCO-GAN/
https://hubert0527.github.io/COCO-GAN/

COCO-GAN

COCO-GAN can also

e Interpolate between latent
codes

“COCO-GAN: Generation by Parts via

Conditional Coordinating” by Lin et al
(2019)

Figure 5: The results of full-images interpolation between
two latent vectors show that all micro patches are changed
synchronously in response to the change of the latent vector.
More interpolation results are available in Appendix G.


https://hubert0527.github.io/COCO-GAN/
https://hubert0527.github.io/COCO-GAN/

COCO-GAN

COCO-GAN can also

e  Out-paint by using micro
coordinates outside the normal
input range.

o  Worked a bit without
special training, but had
some edge effects at
original border.

o  Worked better after
specifically training for it.

“COCO-GAN: Generation by Parts via

Conditional Coordinating” by Lin et al
(2019)



https://hubert0527.github.io/COCO-GAN/
https://hubert0527.github.io/COCO-GAN/

COCO-GAN

COCO-GAN can also
o 360° 720°
e Generate panoramas '
o  Side effect of training
with a cyclic coordinate
system

“‘COCO-GAN: Generation by Parts via

Conditi |C dinating” by Li t al Figure 8: The generated panorama is cyclic in the horizontal direction since COCO-GAN is trained with a cylindrical
onditional L-oordinalin yLineta coordinate system. Here, we paste the same generated panorama twice (from 360° to 720°) to better illustrate the cyclic

(2019) property of the generated panorama. More generation results are provided in Appendix H.


https://hubert0527.github.io/COCO-GAN/
https://hubert0527.github.io/COCO-GAN/

Patch-based Hybrids

Easy idea:

e Break image into many non-overlapping patches (not quite like CNN)

e Latent code per patch
o Note: COGO-GAN looked like this, but that was micro-coordinates, not different latent codes.

Challenge:

e Make the patches seamless
e How to trade off number/size of patches to balance quality vs latent size?



INStant Neural
Graphics Primitives
with a Multiresolution
Hash Encoding

Very fast, very parallelized

Multi-resolution apprach
Small neural network rendering
many patches
Coarse (large) patches get
dedicated feature storage.
Fine (small) patches stored in a
hash table.

o  Biggest gradients win

collisions.

“Instant Neural Graphics Primitives

with a Multiresolution Hash Encoding”
by Muller et al (2022)

Trained for 1 second 15 seconds

60 seconds

1 second 15 seconds reference
= 57 57

Gigapixel image

SDF

NRC

NeRF



https://nvlabs.github.io/instant-ngp/
https://nvlabs.github.io/instant-ngp/

Infinite Scene
Generation

Unbounded extrapolation of latent
vectors...

e \Watch the video in the link
below...

“Aligning Latent and Image Spaces to

Connect the Unconnectable” by
Skorokhodov et al (2021)


http://skor.sh/alis
http://skor.sh/alis

Shape
Representation

How to represent a 3D shape with a
neural field?

e Train field with positive value
outside the shape and negative
value inside the shape.

e Resultis a signed distance
function where zero represents
the surface of the shape.

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

“‘DeepSDE: Learning Continuous

Signed Distance Functions for Shape
Representation” by Park et al (2019)


https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html

Shape
Representation

e The surface can be constructed
by querying various points to

see if they are inside or outside.

e  Computer graphics has
standard methods to
reconstruct the surface based
on in/out status of a cube’s
vertices.

“‘DeepSDF: Learning Continuous

Signed Distance Functions for Shape
Representation” by Park et al (2019)

o e . 2 Decision
____ boundary
e  of implicit
° surface
® [
» e o
o SDF >0
° ° Lo
° °
@@ SDF <0

(©

Figure 2: Our DeepSDF representation applied to the Stanford
Bunny: (a) depiction of the underlying implicit surface SDF = 0
trained on sampled points inside SDF' < 0 and outside SDF' > 0
the surface, (b) 2D cross-section of the signed distance field, (c)
rendered 3D surface recovered from SDF = 0. Note that (b) and
(c) are recovered via DeepSDF.


https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html

Aside: Auto-Decoders

The DeepSDF work argued that it was better to just focus on the decoder
component of parameterized neural fields.

e Skip encoder part and find best latent code via gradient descent.

e Then train latent code and network at the same time.
o Technically, the latent codes become more parameters in the optimizer.

“DeepSDEF: Learning Continuous Signed Distance Functions for Shape
Representation” by Park et al (2019)



https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_DeepSDF_Learning_Continuous_Signed_Distance_Functions_for_Shape_Representation_CVPR_2019_paper.html

Shape Representation
with Patches

Like SDF, but lots of patches...

DeepSDF DeepLS :
s = folx, 2) s, = fo(TI(x), z) -
. .SDF-
z . Cell i fo ]
/ == v '
Code _I.; _______________
Shape - - [ Shape
A B Code
[ ] Local Volume

Deep Local Shapes: Learning Local
SDF Periors for Detailed 3D

Reconstruction by Chabra et al (2020)


https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740596.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740596.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740596.pdf

Shape Representation
with Patches

Generally makes finer-grained details

easier... _ — ol .
5 &=L | ¥ ,g

) Fig. 4: Comparison between our DeepLS and DeepSDF on 3D Warehouse [1] dataset.
Deep Local Shapes: Learning Local

SDEF Priors for Detailed 3D
Reconstruction by Chabra et al (2020)


https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740596.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740596.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740596.pdf

Neural Radiance
Fields

Inspired by previous (non-NN) work on
volume rendering with a grid
representation of space.

e Slightly expanded use of the

term “field”.
o Position + orientation as
the inputs

“Representing Scenes as Neural
Radiance Fields for View Synthesis”

by Mildenhall et al (2020)

NeRF (neural radiance fields):
Neural networks as a volume representation,
using volume rendering to do view synthesis.

(x,y,2,0,¢) = color, opacity


https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

Neural Radiance
Fields

Building a differentiable rendering
pipeline:

e The image output can be
expressed a formula based on
many “looked up” values, so
can compute derivatives with
respect to those values.

“‘Representing Scenes as Neural
Radiance Fields for View Synthesis”

by Mildenhall et al (2020)

Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td:

Ray

K N 5 &
C~ Y Tae differentiable w.r.t.
=1 \

colors

\
weights

How much light is blocked earlier along ray:
1—1
T, = [[(1-a))
Jj=1

‘ Camera

How much light is contributed by ray segment i:

a; =1 — e il


https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

Neural Radiance

Fiel : i i
elds Representing a scene as a continuous 5D function

Building a differentiable rendering
pipeline:

e Then replace the “lookups” with

a neural network. (x, v, Z, 6, ¢) —»III-’(}", ) 24" b, 0-)

Spatial Viewing Output Output

location direction FQ color density

Fully-connected
neural network
9 layers,

“‘Representing Scenes as Neural 256 b |
. . . C channels
Radiance Fields for View Synthesis

by Mildenhall et al (2020)



https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

Neural Radiance Fields

Their key points (verbatim from technical talk video)

e Continuous neural network as a volumetric scene representation
(5D = xyz + direction)

e Use volume rendering module to synthesize new views.

e Optimize rendering loss using one scene (no prior training)

e Apply positional encoding before passing coordinates into the network to
recover high frequency details.

“Representing Scenes as Neural Radiance Fields for View Syn
Mildenhall et al (2020)

Application of Fourier
features to neural fields
came from this paper.


https://www.matthewtancik.com/nerf

Neural Radiance
Fields

The volumetric representation forces
learning the 3D geometry.

e Density is one of the output
parameters.

e Designed for rendering, more
like transparency, but directly
reveals shapes of visible
objects.

“‘Representing Scenes as Neural
Radiance Fields for View Synthesis”

by Mildenhall et al (2020)

NeRF encodes detailed scene geometry

Regular NeRF rendering

Expected ray termination depth


https://www.matthewtancik.com/nerf
https://www.matthewtancik.com/nerf

Weak Points of NeRF

e All about rendering
e Captures relevant geometry
o But needs camera poses.

e But no explicit semantics related to objects.
o  Much follow up work targeted here.

e Also, super slow!



Multiscale NeRF

TLDR: Use tricks with positional
encoding to sample a
Gaussian-shaped region of space
instead of just a single point.

Let’s just watch the video.

P . . o .
Mip-NeRF: A Multiscale a) NeRF b) Mip-NeRF
Representation for Anti-Aliasing Neural

Radiance Fields” by Barron et al
(2021)


https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf/
https://jonbarron.info/mipnerf/

Plenoxels

Speedup NeRF by going back to
grids???

Build a model per grid location.

Only model a sparse subset of - D T I v
the grid specific to the scene. i ( L
Grid models are simpler.
orientation — color + density

Predicted
Color

St L er [ OIAN

Ray Distance

. . / & c) Volumetric Rendering
pse spherical harmonics % &
instead of neural networks. S minimize L,ccon + AMry
X {o0.@}
S )
“Plenoxels: Radiance Fields without ¢ a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization

Neural Networks” by Fridovich-Keil et
al (2022)


https://alexyu.net/plenoxels/
https://alexyu.net/plenoxels/

Aside: Spherical
Harmonics

Like the Fourier transform but over the
surface of a sphere...

“Visual representations of the first few
real spherical harmonics. Blue portions
represent regions where the function is
positive, and yellow portions represent
where it is negative. The distance of
the surface from the origin indicates
the absolute value of in angular
direction.”

Source:

https://en.wikipedia.org/wiki/Spherical
harmonics



https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics

PlenOctrees

O”gmal version: (a) NeRF-SH Training ‘ (b) Conversion to PlenOctree
=0 Density J
Build NeRF model. Vs R —~k | = -
. — Y v x5 Fine-tuni
Convert into octree data structure N4 I \ et
Lo o " 0 “ R ::: — — 3 ) 5
giving extremely fast “inference”. (0.6) > K@+ ®L@® _ZNC(():lor CSSE le—& j

o  More of a lookup now.
o  Still uses spherical
harmonics like Plenoxels.
o  150fps at 800x800
e  Optionally fine-tune PlenOctree
rendering - still is differentiable.
e  Follow up work directly trained
PlenOctree from training images.

BOHOKOHOK® |
s . Dense Samples  NeRF-SH

PlenOctree

Spherical Harmonics

“PlenOctrees For Real-time Rendering of
Neural Radiance Fields” by Yu et al
(2021).



https://alexyu.net/plenoctrees/
https://alexyu.net/plenoctrees/

Plenoctrees

So what went right here?

e Much simpler evaluation process compared to neural network.
e Much clearer gradients. No interactions with rest of the scene.
e But hierarchical construction gave sharing effects and smoothing early on.



Plenoctrees

Loaded question:

Should neural networks always be replaced this way?
No. At least specific to low numbers of dimensions...

o Numbers of models and seams to fix will grow exponentially.
Also still need base model

o Fall back to small neural networks if small base is not available?
End-to-end trainability

o Rendering case fixes the path involved.
o  Other applications might involve path changes which break differentiability.



Editable NeRFs?

Since NeRFs have structure that is
made for a rendering pipeline, can
they be tweaked on the fly for different
effects?

Watch the videos...

“NeRV: Neural Reflectance and
Visibility Fields for Relighting and View
Synthesis” by Srinivasan et al (2021)



https://pratulsrinivasan.github.io/nerv/
https://pratulsrinivasan.github.io/nerv/
https://pratulsrinivasan.github.io/nerv/

Neural Fields and Semantics

e Neural field representations tend to be light on semantics...
o Some structure is exposed for rendering, but relatively low level.
o Open question how to better integrate knowledge of existing objects.
o Current local parameterized versions may be good at identifying objects at those patches, but
necessarily miss the bigger picture.



Rest of the Semester

Thanksgiving break (11/27)
Reinforcement learning (12/2)
Project presentations (12/4)
Project presentations (12/9)

Mail me if you would prefer to present 12/4. Will pick randomly otherwise.



Feedback?




